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GRAPH DATA

Graph: collection of interconnected nodes

- Social networks

\ - *
LinkedIn ego network
Credit: http://allthingsgraphed.com


http://allthingsgraphed.com

GRAPH DATA

Graph: collection of interconnected nodes

- Social networks

- Power grids

Japanese electrical network
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Graph: collection of interconnected nodes

- Social networks TR

- Power grids

- Transportation networks @:A

SNCF network
Credit: PouX / madcap, License: CC BY-SA 3.0
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GRAPH DATA

Graph: collection of interconnected nodes

- Social networks
- Power grids
- Transportation networks

- Biological networks

Protein-protein interaction network
Credit: http://allthingsgraphed.com


http://allthingsgraphed.com

GRAPH DATA

Graph: collection of interconnected nodes

- Social networks
- Power grids

- Transportation networks

° B 10 I-Ogl Cal n etWO rl(S Hyperlinks between American political blogs
Credit: http://allthingsgraphed.com

- Web pages
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- Graphs as an abstraction (e.g,,
similarity graphs)
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EXAMPLES OF RELEVANT TASKS

- Graph analysis (measuring networks)
- Global study of connectivity and topology
- Community detection
- Identification of important (central) nodes

- Learning in graphs
- Link prediction
- Node classification
- Graph embedding



BASIC GRAPH NOTIONS




NOTATIONS

- A graph consists of a set of vertices (or nodes) and a set of edges

- More formally, a graph is denoted by G = (V, E) where

- V=1{1,...,n} is the set of nodes
- ECV x Visthe set of edges

- An edge (i,)) € E links nodes i and j: we say they are adjacent or
neighbors



DEGREES

- The degree of a node is equal to its number of neighbors

- A graph is complete if there is an edge between every pair of
vertices

- In a complete graph, all nodes thus have degree n — 1

d=[2,2,3,1 d=1[2,2,2]



PATHS

- A path from node i to node j is a sequence of edges from i to j
- A cycle is a path that starts and ends at the same node

- The length of a path is the number of edges in the path

- A geodesic path is a shortest path between i and j

- The diameter of a graph is the length of the longest shortest
path between any two nodes



CONNECTIVITY

- All vertices which can be reached from each other by a path
form a connected component

- A graph is connected if it has a single connected component

v ovd

Connected graph Graph with 2 connected components:
{1,2,3} and {4,5}



DIRECTED GRAPH

- Until now the graphs we considered were undirected

- In a directed graph, edges are ordered pairs
- (i,J) € E points from i to j
- In-degree of i: number of incoming edges to i
- Out-degree of i number of outgoing edges from i

d" = [1,1,2,0]
et = 1,1,



COMPUTER REPRESENTATIONS

- Text representation: edge list

Corresponding file

W N R e
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COMPUTER REPRESENTATIONS

- Matrix representation: adjacency matrix A € R™"
. A,‘J =1if (I,j) € E, else A,‘J =J()
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(symmetric) (not symmetric)



COMPUTER REPRESENTATIONS

- Linked list representation: adjacency lists

Adjacency lists

2 -> 3

1->3
1 ->2 -> 4

3

S~ W N R

- The best representation depends on available memory and
algorithm of interest
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RICHER GRAPHS

- Weighted edges (e.g., distance, similarity score)
- Labels on nodes and/or edges

- Feature vectors associated with nodes and/or edges



SOME CLASSIC GRAPH PROBLEMS AND ALGORITHMS

- Find shortest paths from a node to all others

- Algorithm: Dijkstra
- Time complexity (adjacency lists): O(|E| + |V| log(|V]))

- Graph traversal (visit all nodes of the graph)

- Algorithm: Depth-first search or breadth-first search
- Time complexity: O(|E| + |V|)
- Can be used to identify connected components

- Traveling Salesman Problem (TSP)

- Algorithms: approximations and heuristics
- Time complexity: NP-complete (exponential in graph size)
- World TSP: http://www.math.uwaterloo.ca/tsp/world/
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GRAPH ANALYSIS




FROM THE NETWORK TO INDIVIDUAL NODES

- We can analyze / measure the graph at different scales:

- Global properties of the network
- Communities (clusters of nodes)
- Individual nodes

- In this part we will go from the global scale to the local scale



GLOBAL MEASURES OF NETWORKS

- Many descriptive measures are used to analyze the global
properties of a network

- Degree distribution
- Clustering coefficient
- “Small world” phenomena

- We will illustrate some of them on two random graph models
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ERDOS—RENYI MODEL

- The Erdos-Rényi random graph model has two parameters
- The number of nodes n
- A probability 0 < p <1

- Arandom graph with n nodes is generated by drawing an edge
between each pairs of nodes (i,j) independently with
probability p

- This models graphs where nodes connect in a random and
uniform way

A U N/
w/

p=0 p=0.1 p=0.15
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BARABASI-ALBERT MODEL

- The Barabasi-Albert random graph model has two parameters

- An initial graph with n nodes
- A probability 0 < p <1

- Nodes are added one at a time as follows

1. With probability p, go to step 2, else go to step 3

2. Connect new node to n existing nodes chosen uniformly at random

3. Connect new node to n existing nodes with a probability
proportional to their (in-)degree

- This models graphs with preferential attachment, often seen in
real networks
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DEGREE DISTRIBUTIONS

- Let p, be the probability that a randomly selected node has
degree k

- Erdos-Reényi: distribution of degree of a vertex is binomial

n—1
Dp = < " >pfe(»| - p)nf1ffe

- Highly concentrated around the mean
- Probability of high degree nodes decreases exponentially fast

- Barabasi-Albert: degree distribution follows a power law
Pr X R~

- Heavy-tailed distribution: non-negligible fraction of high degree
- Scale-free: average degree is not informative
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DEGREE DISTRIBUTIONS

probability

Erdos—Rényi

A\ 4

degree

probability

Barabasi-Albert

v

degree
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DEGREE DISTRIBUTIONS

- Power law distributions give roughly a line in the log-log plot

- Many real networks have power law degree distributions
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DEGREE DISTRIBUTIONS

- Which graph is uniformly random and which one is scale-free ?
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MAXIMUM AND AVERAGE DEGREE

- Erdos-Rényi graphs
- Average degree is np (in expectation)
- Maximum degree highly concentrated around average degree

- For power law graphs (Barabasi-Albert)

- Average degree is a constant if a > 2 (diverges if a < 2)
Q o 1
- Maximum degree is O (n (M>
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CLUSTERING COEFFICIENT

- A measure of how well nodes tend to cluster together

- The local clustering coefficient quantifies how close a node i
and its neighbors are to being a complete graph

__ triangles centered at node i
~ triples centered at node i

- The global clustering coefficient CC = 1 31 | C; measures the
density of triangles (local clusters) in the graph

1
5

13
30

CC= (1+1+ +O+O>
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CLUSTERING COEFFICIENT

- For Erdos—-Rényi random graphs, E[CC] =C; = p
- Probability of two of your neighbors to also be neighbors is p,
independently of the local structure

- For Barabasi-Albert random graphs
- CC approximately follows a power law in the number of nodes
- Let C(R) be the average clustering coefficient of nodes with degree
k, then C(k) o< k=" for Barabasi-Albert

- More generally, a power law distribution for C(k) indicates a
hierarchical structure
- Nodes with low degree are connected to other nodes in their
community
- Nodes with high degrees are linked to nodes in different
communities
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SMALL WORLD PHENOMENON

- Originates from Milgram’s small world experiment in the 60's

- How to measure the small world phenomenon?
- Average length of shortest paths
- Diameter of the graph (longest shortest path)
- Length distribution of all shortest paths
- High clustering coefficient

Marvel Comic Book Artist Collaboration Network from http://allthingsgraphed.com 30
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COMMUNITY DETECTION

- We seek to partition the nodes of the graph into a set of groups
(clusters) according to a certain quality criterion

- Applications: identify
- social communities
- clients with similar behavior
- web pages about the same topic
- proteins with strong interactions with each other
- products frequently bought together
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WHAT IS A GOOD COMMUNITY?

- No universal definition: depends on the application and the
network of interest

- General idea: a community is a set of nodes densely connected
internally and/or sparsely connected externally
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GENERAL APPROACH TO COMMUNITY DETECTION

1. Define a quality criterion reflecting the desired properties of the
communities
- Many existing criteria (see next slide)

2. Design an algorithm to find the community optimizing the
criterion
- This is generally NP-difficult: for graphs with more than a few
hundred nodes, only approximate solutions can be guaranteed

33



SOME QUALITY CRITERIA

Notations

n: number of nodes in the graph ~ m: number of edges in the graph
S C V: nodes in the community ns: number of nodes in S
ms: number of edges in S 0s: number of edges between Sand V' \ S

- Based on internal connections:

. Nz \does: ms
Internal density of e dgos.z T =Ty
- Average internal degree: n—:

- Based on external connections:

- Expansion: &5
. i . s
Ratio cut: e (=TE)
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SOME QUALITY CRITERIA

Notations

n: number of nodes in the graph ~ m: number of edges in the graph
S C V: nodes in the community ns: number of nodes in S
ms: number of edges in S 0s: number of edges between Sand V' \ S

- Based on both internal and external connections:

- Conductance: =2

2ms+-0s
. - i o Os 0s
Normalized cut: smstos T Fm—ms)Tos

- Modularity: 1(ms — E[ms])
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ZOOM ON MODULARITY

- The expectation E[ms] is computed with respect to a random
process which preserves the degree of each node

- Each edge is split into two parts (one on each node)
- Each part is combined to another randomly

- Modularity is then equal to:

1 dd;

2m £
Ijev

- Finding the communities maximizing the modularity requires to
consider an exponential number of groups — very costly even
for graphs with a few hundred nodes
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LOUVAIN METHOD

- At the beginning, each node has its own community

- The algorithm alternates between two phases until convergence:

1. Optimize local modularity
For each node, we create a new community with the neighboring node
maximizing the modularity. If no modularity improvement is possible, we
keep the node alone.

2. Create a new weighted graph
The communities of phase 1 become the nodes of the graph. We create a
self-loop on each community node weighted by the number of links within
the community, and a link between pairs of communities weighted by the
number of links between these communities.

- We obtain an approximate solution (no theoretical guarantee
but good practical performance)
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OTHER APPROACH: HIERARCHICAL CLUSTERING

- It is often relevant to analyze the community structure at
different scales (cluster sizes)

- Goal: construct a hierarchy of clusters (represented as a
dendrogram)
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HIERARCHICAL CLUSTERING: BOTTOM-UP APPROACH

- In the bottom-up approach, we start with a cluster for each
node (as in Louvain method)

- Greedy algorithm: at each iteration, we merge the two “closest”
clusters

- We thus need to define a notion of dissimilarity between nodes
and between sets of nodes

39



HIERARCHICAL CLUSTERING: DISTANCES

- A natural distance function d(i, /) between 2 nodes i and j is the
length of the shortest path between i and j

- Some popular dissimilarity measures between two clusters C;
and G, (linkage criterion):
- Minimum linkage: D(Ci, G2) = Minjeq, jec, d(i,))
- Maximum linkage: D(Gi, C2) = MmaXicc, jec, d(/, f)
- Average linkage: D(G, ) = m Zieq,/eq d(i, )
- Centroid linkage: D(Cy, G;) = d(G, G2) where Gy and G, are
the“centers” of ¢, and G,

40



IDENTIFY CENTRAL NODES

- Goal: rank the nodes of the graph according to a centrality
measure (importance)

- Applications: identify
- influencers in a social network
- important (“hub”) web pages
- bottlenecks in transportation networks
- products relevant for “loss leader” pricing strategies

41



HOW TO DEFINE CENTRALITY ?

- Again, no universal definition

- Yet, a central notion: walks in graphs

- Awalkis a path which can go through the same node several times

- Centrality measures vary with the type of walk considered and the
way of counting them (number or length)

42



POPULAR CENTRALITY MEASURES

- Degree centrality: C(x;) = d;
- Interpretation: number of walks of length 1 ending at node i

- Eigenvector centrality: C(x;) =v; = %27:1 AiiC(x)
- v satisfies Av = Av where X is the largest eigenvalue of A
- Interpretation: number of walks of infinite length ending at node i
- More importance given to nodes with well-connected neighbors
- Google PageRank is a variant of eigenvector centrality
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POPULAR CENTRALITY MEASURES

- Closeness centrality: C(x;) = E# o

- d(i,j): length of shortest path between nodes i and
- Interpretation: inversely proportional to the sum of lengths of the
shortest paths to other nodes
- Betweenness centrality: C(x;) = 3 ;4 "gm
- ogj: number of shortest paths between j and R
- ojr(i): number of shortest paths between j and k going through i
- Interpretation: number of times the node acts as a “bridge”
between two nodes

4l



LEARNING IN GRAPHS




LEARNING IN GRAPHS

- So far we have focused on analyzing an observed graph

- Global properties
- Communities
- Node centrality

- In this part we will learn from the observed graph to make
predictions

- We will consider two tasks: link prediction and node labeling
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LINK PREDICTION

- Goal: given a graph G, predict new edges

- These new edges can represent probable future interactions
- E.g., two persons likely to become friend on Facebook

- They can also be missing edges (partially observed graph)
- E.g, only a subset of protein-protein interactions are known
- E.g, not all product combinations have been tried (to see whether
they sell well together)

47



LINK PREDICTION: STANDARD APPROACH

- Use a similarity measure between pairs of nodes to rank
potential edges

- Top-ranking edges are the more likely to be correct
- We can thus predict the top-k edges, or use a threshold

- This graph-based strategy can be easily combined with a
content-based approach (when data is attached to nodes)

48



LINK PREDICTION: SIMILARITY SCORES

Notation
N(i): set of neighbors of node i

- Common neighbors: S(i, ) = |N (i) N N())|
- Jaccard coefficient: S(i,j) = %
- Normalized version of common neighbors
: : 1
- Adamic-Adar index: S(i,)) = Z —_—
REN (i) NN () log | V()|

- More weight given to common neighbors of low degree

- Preferential attachment: S(i, j) = N (i)| - IN ()]

49



LINK PREDICTION: SIMILARITY SCORES

- Some similarity scores also use the community information
when available
- More weight given to neighbors from the same community

- Additional data attached to nodes can be easily integrated as
part of the score
- E.g, cosine similarity between node feature vectors
- E.g, classifier trained to predict the presence of an edge from data
at two nodes

50



LINK PREDICTION: EVALUATION

- How to evaluate the accuracy in link prediction and perform
model selection?

- Practical approach: hide a subset of node pairs and predict
based on the rest of the graph

- Performance measures:
- Proportion correct predictions
- Area under the ROC Curve (AUC): probability that an existing edge
picked at random is ranked higher than a non-existing edge
picked at random
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NODE LABELING

- Goal: given a graph where some nodes are labeled, predict
missing node labels

- This is a semi-supervised learning problem

- Central assumption: correct labels are smooth on the graph

- Classification: two neighbors tend to have the same label
- Regression: two neighbors tend to have similar target values
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GRAPH LAPLACIAN MATRIX

- For a graph G = (V, E) we denote by

adjacency matrix

A

w weight matrix

D (diagonal) degree matrix
D

—w Laplacian matrix (symmetric)

L=] 0 -3 5 =2 0
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REFRESHER ON EIGENVECTORS AND EIGENVALUES

- Let L € R™" symmetric matrix

- Avectorv € R" is an eigenvector of L of eigenvalue A € R if
Lv = \v

< If (M, vq), (A2, v2) are eigenpairs for L with Ay # A, then vy L vy,
ie,viv, =0
L, VWV =

- If (A\,vq), (A, v2) are eigenpairs for L, then (X, vy + v,) is also en
eigenpair

- The multiplicity of eigenvalue X is the dimension of the space of
eigenvectors corresponding to A

- L has n eigenvalues (counting possible multiplicities)
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PROPERTIES OF LAPLACIAN MATRIX

- L is symmetric positive semi-definite (PSD) since for any f € R”

filf = f'of —f'wf
= > dff =D Y wififi=> > wiff =) > wiff
r' T m T

1
i (ZZW : 2Zzw/-m+zzw_ﬁ>
i 5 ~ <
1
= 32> wilfi—fY 20
! J
- Since L is PSD, its eigenvalues satisfy 0 < A\ < --- < A,

- We can easily see that (0,1,) is an eigenpair for L
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PROPERTIES OF LAPLACIAN MATRIX

Theorem

The multiplicity of eigenvalue 0 of L is equal to the number of con-
nected components of the graph. The eigenspace of 0 is spanned
by the components’ indicators.

Proof.

If (0,f) is an eigenpair, then 0 = %Z,J w;;(fi — f;)?, hence f is constant
on each connected component. If there are k connected components, L is
k-block-diagonal:

Ly

Ly

The spectrum of block-diagonal matrices is the union of the spectra of
L; (padded with zeros). The theorem follows from the fact that for i =
1,...,k (0,1y,) is an eigenpair for L;, where V; is the set of nodes in the il
connected component. O 56



SMOOTHNESS OF A GRAPH FUNCTION

- A graph function is a vector f € R" assigning values to nodes
f:V—>R

- The smoothness of a graph function is given by the quadratic
form of the Laplacian

Self) = £1Lf = 5 S wij(f: ~ )
i

- When Sg(f) is small, f does not vary much in high density
regions of the graph
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SYMMETRIC NORMALIZED LAPLACIAN

- We can also consider a symmetric normalized Laplacian matrix

- Normalized variant of smoothness

rer-ipn )

+ Lsym is also PSD, and (0,D'?1,) is an eigenpair for Lsp,
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BEYOND EXPLICIT GRAPHS: DATA ON A MANIFOLD

- There is a natural link between discrete representations
(graphs) and continuous representations

- Metric space: distances between all points in the space are
defined (e.g, Euclidean space)

- Manifold: every point has a neighborhood which is
homeomorphic to the Euclidean space
- Locally Euclidean (distance in small region is meaningful)
- Global structure more complex (Euclidean distance between
“distant” points is meaningless)
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SIMILARITY GRAPHS AND MANIFOLD STRUCTURE

- Let xq,...,X, be a set of data points with similarity matrix S
- Sjj > 0: similarity score between x; and x;
- Can use standard / handcrafted / learned similarity measure

- Similarity graph: (x;,x;) € E if S;; large enough
- Such a graph can approximate the manifold structure!

- For this to work we must enforce locality (sparsify the graph)
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SPARSIFICATION OF SIMILARITY GRAPHS

- k-nearest neighbor graph
- Connect i andjif x; is among the k-nearest neighbors of v; and/or
X; is among the k-nearest neighbors of v

- e-neighborhood graph
- ConnectiandjifS;;is largerthan e

- Exponential graph
- Weight each edge (i,j) € V2 by S;;
- Must use with fast-decaying similarity to enforce locality
- Typical choice is the Gaussian kernel S;; = exp(—~l|x; — xj||*)

- Some issues

- Little theoretical underpinning to guide graph construction
- Must tune R, € or v to adjust locality
- For efficiency reasons, we like to deal with sparse graphs
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EXAMPLE: MOVIE SIMILARITY GRAPH



MANIFOLD REGULARIZATION

- Assume data lies on a nonlinear manifold M c X

- We want to learn a function f : M — R which varies smoothly in
dense regions

- Natural choice is to enforce small gradient along M where the
marginal probability density is large

IFI? = / IV f ()IPP(X)dx
XeM

- P(x) is unknown but we can approximate it using n
labeled/unlabeled points [Belkin et al., 2006]

IFI7 ~ —fLf = 2 5" wislfi — £
i

under some conditions (appropriately scaled exponential graph)
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MANIFOLD REGULARIZATION

- Manifold regularization: use the quadratic form of the
Laplacian as regularizer for machine learning models

- Generic way to make use of unlabeled data in supervised
learning algorithms — semi-supervised learning

- Smoothness assumption becomes the manifold assumption:
points connected via a path through high density regions on the
data manifold are likely to have a similar label

- Many successful algorithms: Laplacian eigenmaps, Laplacian
SVMs, label propagation, online node labeling...
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SEMI-SUPERVISED LABEL PROPAGATION: NOTATIONS

< Let X, ..o X Xiaqy ..o Xn €ERP

- We have labels yy,...,y, € {1,...,C} for the first [ points
- Build exponential graph with W;; = exp(—~||x; — X;[|?)

- Define initial label matrix Y € R"*¢ such that

v — 1 ifx; has labely; =
Y71 0 otherwise

- The algorithm will generate a prediction matrix F € R"*¢ from
which we will predict the label of a node i using

yi = argmax; fi;
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SEMI-SUPERVISED LABEL PROPAGATION: FORMULATION

- The prediction matrix F € R"*¢ is the one minimizing the
following objective function [Zhou et al., 2003]

T +MZHF —v||2>

smoothness term fit known labels

min (ZW,]
FERnxc

1,j=1

- Trade-off between two terms (ruled by x> 0)

- Smoothing predictions with normalized Laplacian
- Keeping accurate predictions for labeled points
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SEMI-SUPERVISED LABEL PROPAGATION: SOLUTION

- The objective function is convex and quadratic, so there is a
closed-form solution (found by setting the gradient to zero)

F* = ((1— )+ Lym)™'Y, witha =1/(1+ p)

- Inverting (1 — &)l + Lsym is costly for large graphs

- Equivalent and cheaper iterative algorithm:
1. Initialize F(0) =Y
2. Iterate the following until convergence

F(t+1) = a(l = Lsym)F(t) + (1 — )Y
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SEMI-SUPERVISED LABEL PROPAGATION: ILLUSTRATION
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